sklearn_ module¶
Scikit-learn compatible class for splitting.
SplitterCV class¶
SplitterCV(
splitter=None,
*,
splitter_cls=None,
split_group_by=None,
set_group_by=None,
template_context=None,
**splitter_kwargs
)
Scikit-learn compatible cross-validator based on Splitter.
Usage
- Replicate
TimeSeriesSplitfrom scikit-learn:
>>> from vectorbtpro import *
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 3, 4])
>>> cv = vbt.SplitterCV(
... "from_expanding",
... min_length=2,
... offset=1,
... split=-1
... )
>>> for i, (train_indices, test_indices) in enumerate(cv.split(X)):
... print("Split %d:" % i)
... X_train, X_test = X[train_indices], X[test_indices]
... print(" X:", X_train.tolist(), X_test.tolist())
... y_train, y_test = y[train_indices], y[test_indices]
... print(" y:", y_train.tolist(), y_test.tolist())
Split 0:
X: [[1, 2]] [[3, 4]]
y: [1] [2]
Split 1:
X: [[1, 2], [3, 4]] [[5, 6]]
y: [1, 2] [3]
Split 2:
X: [[1, 2], [3, 4], [5, 6]] [[7, 8]]
y: [1, 2, 3] [4]
Superclasses
- Base
sklearn.model_selection._split.BaseCrossValidatorsklearn.utils._metadata_requests._MetadataRequester
Inherited members
get_n_splits method¶
Returns the number of splitting iterations in the cross-validator.
get_splitter method¶
Get splitter of type Splitter.
set_group_by class property¶
Set groups. See BaseIDXAccessor.get_grouper.
Not passed to the factory method.
split method¶
Generate indices to split data into training and test set.
split_group_by class property¶
Split groups. See BaseIDXAccessor.get_grouper.
Not passed to the factory method.
splitter class property¶
Splitter.
Either as a Splitter instance, a factory method name, or the factory method itself.
If None, will be determined automatically based on SplitterCV.splitter_kwargs.
splitter_cls class property¶
Splitter class.
Defaults to Splitter.
splitter_kwargs class property¶
Keyword arguments passed to the factory method.
template_context class property¶
Mapping used to substitute templates in ranges.
Passed to the factory method.