randnx module¶
Module with RANDNX.
RANDNX class¶
RANDNX(
wrapper,
input_list,
input_mapper,
in_output_list,
output_list,
param_list,
mapper_list,
short_name,
**kwargs
)
Random entry and exit signal generator based on the number of signals.
Generates entries and exits based on rand_enex_apply_nb.
See RAND for notes on parameters.
Usage
Test three different entry and exit counts:
>>> from vectorbtpro import *
>>> randnx = vbt.RANDNX.run(
... input_shape=(6,),
... n=[1, 2, 3],
... seed=42)
>>> randnx.entries
randnx_n 1 2 3
0 True True True
1 False False False
2 False True True
3 False False False
4 False False True
5 False False False
>>> randnx.exits
randnx_n 1 2 3
0 False False False
1 True True True
2 False False False
3 False True True
4 False False False
5 False False True
Superclasses
- Analyzable
- AttrResolverMixin
- Base
- Cacheable
- Chainable
- Comparable
- Configured
- ExtPandasIndexer
- HasSettings
- HasWrapper
- IndexApplier
- IndexingBase
- IndicatorBase
- ItemParamable
- Itemable
- PandasIndexer
- Paramable
- Pickleable
- PlotsBuilderMixin
- Prettified
- StatsBuilderMixin
- Wrapping
vectorbtpro.signals.generators.randnx.ParamIndexer
Inherited members
- AttrResolverMixin.deep_getattr
- AttrResolverMixin.post_resolve_attr
- AttrResolverMixin.pre_resolve_attr
- AttrResolverMixin.resolve_attr
- AttrResolverMixin.resolve_shortcut_attr
- Base.chat
- Base.find_api
- Base.find_assets
- Base.find_docs
- Base.find_examples
- Base.find_messages
- Cacheable.get_ca_setup
- Chainable.chain
- Chainable.pipe
- Configured.copy
- Configured.equals
- Configured.get_writeable_attrs
- Configured.prettify
- Configured.replace
- Configured.resolve_merge_kwargs
- Configured.update_config
- HasSettings.get_path_setting
- HasSettings.get_path_settings
- HasSettings.get_setting
- HasSettings.get_settings
- HasSettings.has_path_setting
- HasSettings.has_path_settings
- HasSettings.has_setting
- HasSettings.has_settings
- HasSettings.reset_settings
- HasSettings.resolve_setting
- HasSettings.resolve_settings_paths
- HasSettings.set_settings
- HasWrapper.chunk
- HasWrapper.chunk_apply
- HasWrapper.get_item_keys
- HasWrapper.select_col
- HasWrapper.select_col_from_obj
- HasWrapper.should_wrap
- HasWrapper.split
- HasWrapper.split_apply
- HasWrapper.ungroup
- IndexApplier.add_levels
- IndexApplier.drop_duplicate_levels
- IndexApplier.drop_levels
- IndexApplier.drop_redundant_levels
- IndexApplier.select_levels
- IndexingBase.indexing_setter_func
- IndicatorBase.cls_dir
- IndicatorBase.column_only_select
- IndicatorBase.column_stack
- IndicatorBase.config
- IndicatorBase.dropna
- IndicatorBase.fix_docstrings
- IndicatorBase.get
- IndicatorBase.group_select
- IndicatorBase.iloc
- IndicatorBase.in_output_names
- IndicatorBase.indexing_func
- IndicatorBase.indexing_kwargs
- IndicatorBase.input_names
- IndicatorBase.items
- IndicatorBase.lazy_output_names
- IndicatorBase.level_names
- IndicatorBase.loc
- IndicatorBase.main_output
- IndicatorBase.output_flags
- IndicatorBase.output_names
- IndicatorBase.param_defaults
- IndicatorBase.param_names
- IndicatorBase.plots_defaults
- IndicatorBase.range_only_select
- IndicatorBase.rec_state
- IndicatorBase.rename
- IndicatorBase.rename_levels
- IndicatorBase.row_stack
- IndicatorBase.run_pipeline
- IndicatorBase.self_aliases
- IndicatorBase.short_name
- IndicatorBase.stats_defaults
- IndicatorBase.to_dict
- IndicatorBase.to_frame
- IndicatorBase.unpack
- IndicatorBase.unwrapped
- IndicatorBase.wrapper
- IndicatorBase.xloc
- ItemParamable.as_param
- PandasIndexer.xs
- Pickleable.decode_config
- Pickleable.decode_config_node
- Pickleable.dumps
- Pickleable.encode_config
- Pickleable.encode_config_node
- Pickleable.file_exists
- Pickleable.getsize
- Pickleable.load
- Pickleable.loads
- Pickleable.modify_state
- Pickleable.resolve_file_path
- Pickleable.save
- PlotsBuilderMixin.build_subplots_doc
- PlotsBuilderMixin.override_subplots_doc
- PlotsBuilderMixin.plots
- PlotsBuilderMixin.resolve_plots_setting
- Prettified.pprint
- StatsBuilderMixin.build_metrics_doc
- StatsBuilderMixin.override_metrics_doc
- StatsBuilderMixin.resolve_stats_setting
- StatsBuilderMixin.stats
- Wrapping.apply_to_index
- Wrapping.regroup
- Wrapping.resample
- Wrapping.resolve_column_stack_kwargs
- Wrapping.resolve_row_stack_kwargs
- Wrapping.resolve_self
- Wrapping.resolve_stack_kwargs
Subclasses
vectorbtpro.signals.generators.randnx._RANDNX
apply_func method¶
Apply function.
cache_func NoneType¶
Cache function.
custom_func method¶
IndicatorFactory.with_apply_func.<locals>.custom_func(
input_tuple,
in_output_tuple,
param_tuple,
*_args,
input_shape=None,
per_column=False,
split_columns=False,
skipna=False,
return_cache=False,
use_cache=True,
jitted_loop=False,
jitted_warmup=False,
param_index=None,
final_index=None,
single_comb=False,
execute_kwargs=None,
**_kwargs
)
Custom function.
entries class property¶
Output array.
entries_and method¶
Return entries AND other.
See combine_objs.
entries_or method¶
Return entries OR other.
See combine_objs.
entries_stats method¶
Stats of entries as signals.
entries_xor method¶
Return entries XOR other.
See combine_objs.
exits class property¶
Output array.
exits_and method¶
Return exits AND other.
See combine_objs.
exits_or method¶
Return exits OR other.
See combine_objs.
exits_stats method¶
Stats of exits as signals.
exits_xor method¶
Return exits XOR other.
See combine_objs.
n_list class property¶
List of n values.
plot method¶
SignalFactory.__init__.<locals>.plot(
_self,
column=None,
entry_y=None,
exit_y=None,
entry_types=None,
exit_types=None,
entry_trace_kwargs=None,
exit_trace_kwargs=None,
fig=None,
**kwargs
)
Plot RANDNX.entries and RANDNX.exits.
Args
entry_y:array_like- Y-axis values to plot entry markers on.
exit_y:array_like- Y-axis values to plot exit markers on.
entry_types:array_like- Entry types in string format.
exit_types:array_like- Exit types in string format.
entry_trace_kwargs:dict- Keyword arguments passed to SignalsAccessor.plot_as_entries for RANDNX.entries.
exit_trace_kwargs:dict- Keyword arguments passed to SignalsAccessor.plot_as_exits for RANDNX.exits.
fig:FigureorFigureWidget- Figure to add traces to.
**kwargs- Keyword arguments passed to SignalsAccessor.plot_as_markers.
run class method¶
RANDNX.run(
input_shape,
n,
short_name='randnx',
hide_params=None,
hide_default=True,
input_index=None,
input_columns=None,
**kwargs
)
Run RANDNX indicator.
- Parameters:
n - Outputs:
entries,exits
Pass a list of parameter names as hide_params to hide their column levels, or True to hide all. Set hide_default to False to show the column levels of the parameters with a default value.
Other keyword arguments are passed to IndicatorBase.run_pipeline.
run_combs class method¶
RANDNX.run_combs(
input_shape,
n,
r=2,
param_product=False,
comb_func=itertools.combinations,
run_unique=True,
short_names=None,
hide_params=None,
hide_default=True,
input_index=None,
input_columns=None,
**kwargs
)
Create a combination of multiple RANDNX indicators using function comb_func.
- Parameters:
n - Outputs:
entries,exits
comb_func must accept an iterable of parameter tuples and r. Also accepts all combinatoric iterators from itertools such as itertools.combinations. Pass r to specify how many indicators to run. Pass short_names to specify the short name for each indicator. Set run_unique to True to first compute raw outputs for all parameters, and then use them to build each indicator (faster).
Other keyword arguments are passed to RANDNX.run.
Note
This method should only be used when multiple indicators are needed. To test multiple parameters, pass them as lists to RANDNX.run.